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Effective algebraicity for solutions of systems of

functional equations with one catalytic variable

Hadrien Notarantonio, Sergey Yurkevich

Abstract

We study systems of n ≥ 1 discrete differential equations of order k ≥ 1
in one catalytic variable and provide a constructive and elementary proof of
algebraicity of their solutions. This yields effective bounds and a systematic
method for computing the minimal polynomials. Our approach is a general-
ization of the pioneering work by Bousquet-Mélou and Jehanne (2006).

1 Introduction

Numerous combinatorial enumeration problems reduce to the study of functional
equations which can be solved by a uniform method introduced by Bousquet-Mélou
and Jehanne in the seminal work [4]. These functional equations, usually called
discrete differential equations (DDEs) with one catalytic variable, involve a bivariate
generating function F ∈ Q[u][[t]] associated to the enumeration problem, and are
of the form

F (t, u) = f(u) + t ⋅Q(F (t, u),∆aF (t, u), . . . ,∆k
aF (t, u), t, u), (1)

where k ∈ N (called order of the DDE), f andQ are polynomials, and (for some a ∈ Q,
usually 0 or 1) ∆ℓ

a is the ℓth iteration of the operator ∆a ∶ Q[u][[t]] → Q[u][[t]]
defined by

∆aF (t, u) ∶= F (t, u) − F (t, a)
u − a

.

In their paper, Bousquet-Mélou and Jehanne designed a “non-linear kernel method”
which allows to prove that the unique solution of (1) is always an algebraic function
over Q(t, u). Significantly in practice, this approach yields a strategy/algorithm for
finding the minimal polynomial of the specialization F (t, a) and of the bivariate
series F (t, u).

The main contribution of the present paper is the generalization of this method
to the case of systems of discrete differential equations. More precisely, we shall
prove the following theorem (for any field K of characteristic 0):
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Theorem 1. Let n, k ≥ 1 be integers and let f1, . . . , fn ∈ K[u] and Q1, . . . ,Qn ∈

K[y1, . . . , yn(k+1), t, u] be polynomials. Set ∇kF ∶= F,∆aF, . . . ,∆k
aF . Then the system

of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(E

F1
): F1 = f1(u) + t ⋅Q1(∇kF1, . . . ,∇kFn, t, u),
⋮ ⋮

(E
Fn
): Fn = fn(u) + t ⋅Qn(∇kF1, . . . ,∇kFn, t, u)

(2)

admits a unique vector of solutions (F1, . . . , Fn) ∈ K[u][[t]]n, and all its components
are algebraic functions over K(t, u).

The key idea, analogous to the one in [4], for proving this theorem is to define
the correct deformation of (2) that ensures the applicability of a multi-dimensional
analog of the “non-linear kernel method”. Stated explicitly, we show in Lemma 1
that after deforming the equations as in (6), the polynomial in u defined by the
determinant of the Jacobian matrix associated to the numerator equations in (2)
(considered with respect to the Fi) has exactly nk solutions in an extension of the
ring ∪d≥1K[[t1/d]]. Then, after a process of “duplication of variables”, we construct
a zero-dimensional and radical polynomial ideal, a non-trivial element of which must
be the seeked annihilating polynomial. The most difficult step consists in proving
the invertibility of a certain Jacobian matrix (Lemma 3 and Lemma 4) in order to
justify the zero-dimensionality. We remark that an alternative, and possibly more
practical, strategy is to reduce the initial system to a single functional equation.
Our Proposition 1 ensures that such a reduction preserves the roots guaranteed in
the deformation step, however, as we will show in Section 4, this method is not
guaranteed to produce a zero-dimensional polynomial ideal in the end.

Similarly to the work by Bousquet-Mélou and Jehanne, our proof is effective,
in the sense that it produces an algorithm for finding the minimal polynomials of
the power series of interest. Moreover, we can deduce a bound on the algebraicity
degree of any Fi. When K = Q, we can also bound the arithmetic complexity of our
algorithm, that is the number of operations (+,−,×,÷) performed in Q. Denoting by
totdeg(P ) the total degree of a multivariate polynomial P , we obtain the following:

Theorem 2. In the setting of Theorem 1, let (F1, . . . , Fn) ∈ K[u][[t]]n be the vector
of solutions. Let δ ∶= max(deg(f1), . . . ,deg(fn), totdeg(Q1), . . . , totdeg(Qn)). Then
the algebraicity degree of each Fi(t, u) over K(t, u) is bounded by (nkδ)4n2k2. More-
over, if K = Q, there exists an algorithm computing the minimal polynomial of any
Fi(t, a) in (2nkδ)O(nk) arithmetic operations.

Discrete differential equations are ubiquitous in enumerative combinatorics [5, 6,
11]. Systems of DDEs also appear in a variety of different contexts throughout com-
binatorics, for instance for hard particles on planar maps [4, §5.4], inhomogeneous
lattice paths [7], or certain orientations with n edges [2, §5]. The usual strategy for
solving these systems of equations is to try to reduce a given system to a scalar equa-
tion and then apply the method of Bousquet-Mélou and Jehanne. This approach is
usually ad-hoc and needs to exploit additional structure of the system. Moreover,
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since the reduced equation is in general not of the form (1) anymore, the theory
of [4] is not guaranteed to work.

In the literature there exist two methods to overcome these theoretical issues.
First, a deep theorem in commutative algebra by Popescu [9], so-called “nested
Artin approximation”, guarantees that equations of the form (2) always admit an
algebraic solution. Note that the nested condition is automatically satisfied in this
case and that the uniqueness of the solution is obvious. The drawback of using
Popescu’s theorem, however, is that its proof is highly non-constructive and can only
be applied as a “black box”, whereas in practice one is often interested in the explicit
minimal polynomials annihilating the solutions. Secondly, the frequent case when all
polynomials Q1, . . . ,Qn in (2) are linear functions was effectively solved in the recent
FPSAC article [7] by Buchacher and Kauers who designed a “multi-dimensional
kernel method”. From this viewpoint, it is safe to say that our contribution is a
common generalization of central results by Bousquet-Mélou and Jehanne [4] and
Buchacher and Kauers [7], and at the same time an effective and elementary proof
of a special case of Popescu’s theorem [9].

From the examples of systems of discrete differential equations we already men-
tioned, we shall highlight the following two in more detail.

Example 1. The following system of DDEs for the generating function of certain
planar orientations was considered in [2, Eq.(27)] and solved in the same work:

⎧⎪⎪⎨⎪⎪⎩
(EF1

): F1(t, u) = 1 + t ⋅ (u + 2uF1(t, u)2 + 2uF2(t,1) + uF1(t,u)−uF1(t,1)
u−1 ),

(EF2
): F2(t, u) = t ⋅ (2uF1(t, u)F2(t, u) + uF1(t, u) + uF2(t,1) + uF2(t,u)−uF2(t,1)

u−1
).
(3)

From our perspective, (3) has the advantage that it does not require any deformation
and, as we will show in Section 2, it can be solved fast by a direct application of
our method. It is thus a good illustration of the simplest non-trivial case of our
approach.

Example 2. This example of a system of DDEs modelling a particular case of hard
particles on planar maps was introduced and solved in [4, Section 11]:

⎧⎪⎪⎨⎪⎪⎩
(EF1

): F1(t, u) = F2(t, u) + tu2F1(t, u)2 + tuuF1(t,u)−F1(t,1)
u−1 ,

(EF2
): F2(t, u) = 1 + tsuF1(t, u)F2(t, u) + tsuF2(t,u)−F2(t,1)

u−1 .
(4)

As we will explain in Section 4, in order to apply our method directly, the deforma-
tion step (6) is necessary.

The structure of the paper is as follows: In Section 2 we explain our method
in the case of two equations of order one under the genericity assumption that no
deformation is necessary. We summarize the method in an algorithm and show-
case it explicitly on Example 1. Section 3 is devoted to the proofs of Theorem 1
and Theorem 2. In the last Section 4 we briefly explore an improvement to our
approach which in theory has a better algorithmic complexity but which requires a
new genericity assumption. We also discuss possible future works.
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2 The case of two generic equations of first order

Before proving our main theorem in Section 3, we introduce our method in the
situation of two equations of order 1 and under a genericity assumption on the
input system.

Starting with (2), we first multiply (EF1
) and (EF2

) by (u− a)m1 and (u− a)m2

respectively (form1,m2 ∈ N) in order to obtain a system with polynomial coefficients
in u. By a slight abuse of notation, we shall still write (EF1

) and (EF2
) for those

equations. Note that this system induces polynomials E1,E2 in K[x1, x2, z0, z1, t, u]
whose specializations to x1 = F1(t, u), x2 = F2(t, u), z0 = F1(t, a), z1 = F2(t, a) are
zero.

Example 1 (cont.). Multiplying (EF1
) and (EF2

) in Example 1 by u − 1 gives

⎧⎪⎪⎨⎪⎪⎩
E1 = (1 − x1) ⋅ (u − 1) + t ⋅ (2u2x2

1
− u2z0 + 2u2z1 − 2ux2

1
+ u2 + ux1 − 2uz1 − u),

E2 = x2 ⋅ (1 − u) + t ⋅ (2u2x1x2 + u2x1 − 2ux1x2 − ux1 + ux2 − uz1).
In the spirit of [4], we now take the derivative of both equations with respect to u:

(∂x1
E1 ∂x2

E1

∂x1
E2 ∂x2

E2

) ⋅ (∂uF1

∂uF2

) + (∂uE1

∂uE2

) = 0. (5)

Define Det ∶= ∂x1
E1 ⋅∂x2

E2−∂x1
E2 ⋅∂x2

E1 ∈ K[x1, x2, z0, z1, t, u] to be the determinant
of the square matrix above. One can show that

Det(F1(t, u), F2(t, u), F1(t, a), F2(t, a), t, u) ∈ K[[t]][[u]]
admits either 0,1 or 2 distinct non-zero solutions u = U(t) ∈ ∪d≥1K[[t 1

d ]] =∶ K[[t 1

⋆ ]].
We assume now that there exist 2 such solutions U1, U2 ∈ K[[t 1

⋆ ]]; we prove in
Section 3 that it is always the case up to the deformation (6).

Exploiting the idea of [7], we now define v ∶= (∂x1
E2 − ∂x1

E1) and plug
u = U1 into v and into (5). Note that v is an element of the left-kernel of the
square matrix in (5) mod Det(F1(t, u), F2(t, u), F1(t, a), F2(t, a), t, u). After mul-
tiplication of (5) by v on the left, we find a new polynomial relation between
F1(t,Ui), F2(t,Ui), F1(t, a), F2(t, a), t and Ui, namely ∂x1

E1 ⋅ ∂uE2 − ∂x1
E2 ⋅ ∂uE1 = 0

when evaluated at u = Ui. We denote this polynomial by P ∈ K[x1, x2, z0, z1, t, u].
Define the polynomial system S ∶= (E1,E2,Det, P ) ∈ K[t][x1, x2, z0, z1, u]4. It

admits the non-trivial solutions (F1(t,Ui), F2(t,Ui), F1(t, a), F2(t, a), Ui) ∈ K[[t 1

⋆ ]]5,
for i ∈ {1,2}.
Example 1 (cont.). Continuing Example 1, we find

⎧⎪⎪⎨⎪⎪⎩
Det = (4tu2x1 − 4tux1 + tu − u + 1)(2tu2x1 − 2tux1 + tu − u + 1),
P = −2tx1x2 − tx1 + tx2 − tz1 − x2 + P1 ⋅ u + P2 ⋅ u2 + P3 ⋅ u3,

where P1, P2, P3 are explicit (but relatively big) polynomials in Q[x1, x2, z0, z1, t].
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Now, generalizing naturally the steps of [4], we define for i ∈ {0,1} the polynomial
systems Si ∶= S(x2i+1, x2i+2, z0, z1, t, ui) by “duplicating” variables. If (EF1

) and
(EF2

) are “generic”, the ideal ⟨S0,S1,m ⋅(u1−u2)−1⟩ has dimension 0 over K(t) and
hence it is enough to compute a non-zero element of ⟨S0,S1,m ⋅(u1−u2)−1⟩∩K[z0, t]
to find an annihilating polynomial of z0 = F1(t, a).
Example 1 (cont.). Continuing Example 1, we compute1 a generator of the poly-
nomial ideal ⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ ∩Q[z0, t]. It has degree 13 in z0 and 14 in t.
In particular, it contains in its factors the minimal polynomial of F1(t, a) given by(64z3

0
+ 48z2

0
− 15z0 + 1)t3 + (−72z20 + 9z0 + 27)t2 + (2z20 + 19z0 − 19)t − z0 + 1.

We summarize the presented algorithm in the above more compact form.

Algorithm 1: Solving generic systems of two fixed point equations of first
order.
Input: A “generic” system of two DDEs (EF1

), (EF2
) of order 1.

Output: A non-zero R ∈ K[z0, t] annihilating F1(t, a).
1 Replace (EF1

) and (EF2
) by their respective numerators and denote by E1

and E2 the associated polynomials in K[x1, x2, z0, z1, t, u].
2 Compute Det ∶= ∂x1

E1 ⋅ ∂x2
E2 − ∂x1

E2 ⋅ ∂x2
E1 and

P ∶= ∂x1
E1 ⋅ ∂uE2 − ∂x1

E2 ⋅ ∂uE1.
3 Set S ∶= (E1,E2,Det, P ) ⊂ K[x1, x2, z0, z1, t, u].
4 For 0 ≤ i ≤ 1, define Si ∶= S(x2i+1, x2i+2, z0, z1, t, ui).
5 Return a non-zero element of ⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ ∩K[z0, t].
As already stated, for degenerate inputs, any number of equations of any order,

Section 3 ensures that we can always use Algorithm 1 up to a deformation.
We remark that if the strategy above is applied in the case of a single equation

of first order F1 = f(u) + t ⋅ Q1(F1,∆aF1, t, u), the presented method simplifies to
the classical algorithm in [4] relying on studying the ideal ⟨E1, ∂x1

E1, ∂uE1⟩. Stated
explicitly, ∂x1

E1 plays the role of Det and ∂uE1 plays the role of P (as we can take
here v = 1).

3 Proofs of Theorem 1 and Theorem 2

We start by proving Theorem 1. As explained before, the statement and proof can
be seen as a generalization of [4, Theorem 3] and [7, Theorem 2], so several steps are
done analogously. Without loss of generality we assume that a = 0 and set ∆ ∶=∆0.

Denote bym1, . . . ,mn the least positive integers greater or equal than k such that
multiplying (EFi

) in (2) by umi gives a polynomial equation in u. Set β ∶= ⌊2M/k⌋
and α ∶= n2k ⋅ (β + 1) + nM , where M ∶=m1 +⋯+mn.

We will now define a deformation of the system of equations (2). For this purpose,
let ǫ be a new variable, set L ∶= K(ǫ), and let (γi,j)1≤i,j≤n be defined by γi,i = ik and

1All computations in this paper have been performed using msolve [1]
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γi,j = tβ for i ≠ j. Then consider the following system:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(E

G1
): G1 = f1(u) + tα ⋅Q1(∇kG1,∇kG2, . . . ,∇kGn, tα, u) + t ⋅ ǫk ⋅∑n

i=1 γ1,i ⋅∆
kGi,

⋮ ⋮

(E
Gn

): Gn = fn(u) + tα ⋅Qn(∇kG1,∇kG2, . . . ,∇kGn, tα, u) + t ⋅ ǫk ⋅∑n
i=1 γn,i ⋅∆

kGi.

(6)
The fixed point nature of these equations still implies that there exists a unique
solution (G1, . . . ,Gn) ∈ L[u][[t]]n. Remark that the equalities Fi(tα, u) = Gi(t, u,0)
relate the formal power series solutions of (2) and of (6). Hence, showing that each
Gi is algebraic over L(t, u) is enough for proving Theorem 1. Moreover, as we will see
later, the algebraicity of eachGi follows from the algebraicity ofG1(0), . . . , ∂k−1

u G1(0),
. . . ,Gn(0), . . . , ∂k−1

u Gn(0). Here, and in what follows, we shall use the short no-
tation Gi(u) ≡ Gi(t, u, ǫ1, . . . , ǫn), ∂0Gi(u) ≡ Gi(u),Gi(0), ∂uGi(0), . . . , ∂k−1

u Gi(0)
and A(u) ≡ A(∂0G1, . . . , ∂0Gn, t, u) for any polynomial A ∈ L[X1, . . . ,Xn, t, u] with
Xj ∶= xj , zk(j−1), . . . , zkj−1.

Let us define Yi,0 ∶= xi and Yi,j ∶= (xi − zk(i−1) −⋯−
uj−1

(j−1)!zk(i−1)+j−1)/uj for j ≥

1. With these definitions, (6) is equivalent to the following system of polynomial
equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E1 ∶= um1 ⋅ (f1(u) − x1 + tα ⋅Q1(Y1,0, . . . , Yn,k, tα, u) + t ⋅ ǫk ⋅∑n

i=1 γ1,i ⋅ Yi,k = 0,

⋮ ⋮

En ∶= umn ⋅ (fn(u) − xn + tα ⋅Qn(Y1,0, . . . , Yn,k, tα, u) + t ⋅ ǫk ⋅∑n
i=1 γn,i ⋅ Yi,k = 0.

(7)
Like in (5), we take the derivative with respect to u of these equations and find

⎛⎜⎝
∂x1

E1 . . . ∂xn
E1

⋮ ⋱ ⋮

∂x1
En . . . ∂xn

En

⎞⎟⎠ ⋅
⎛⎜⎝
∂uG1

⋮

∂uGn

⎞⎟⎠ +
⎛⎜⎝
∂uE1

⋮

∂uEn

⎞⎟⎠ = 0. (8)

Let Det ∈ L[X1, . . . ,Xn, t][u] be the determinant of the square matrix (∂xi
Ej)1≤i,j≤n

above. The following lemma on the number of distinct solutions to Det(u) = 0 is the
first main step in our proof.

Lemma 1. Det(u) = 0 admits exactly nk distinct non-zero solutions U1, . . . , Unk ∈

L[[t 1

⋆ ]].
Proof. Note that we have

Det(u) = det⎛⎜⎝
−um1 + tǫkγ1,1um1−k ⋯ tǫkγ1,num1−k

⋮ ⋱ ⋮

tǫkγn,1umn−k ⋯ −umn + tǫkγn,numn−k

⎞⎟⎠ +O(t
αuM−nk).

For every i we first divide the ith row by umi−k. Then, using the definition of γi,j
and α,β ≥ n, we see that the matrix above becomes diagonal mod tn+1 and its
determinant mod tn+1 simplifies to ∏n

j=1(−uk + tǫkjk) mod tn+1. So, by the Newton-
Raphsen algorithm, we find nk distinct solutions u = U1(t), . . . , Unk(t) whose first
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terms are given by ζℓ ⋅t
1

k ⋅ǫ+O(t 2

k ), . . . , ζℓ ⋅n ⋅t 1

k ⋅ǫ+O(t 2

k ) ∈ L[[t 1

⋆ ]], for ζ a k-primitive
root of unity and for all 1 ≤ ℓ ≤ k. Finally, note that the constant coefficient in t of

∏n
j=1(−uk + tǫkjk) has degree nk so by [4, Theorem 2] there cannot be more than nk

solutions to Det(u) = 0 in L[[t 1

⋆ ]].
Now, let P be the determinant of the square matrix (∂xi

Ej)1≤i,j≤n where the
last row (∂xn

E1, . . . , ∂xn
En) is replaced by (∂uE1, . . . , ∂uEn). It is easy to see with

standard linear algebra arguments that if Det = 0 then (8) implies that P = 0. We
thus define the polynomial system (S) ∶= (E1, . . . ,En,Det, P ) in L[t][X1, . . . ,Xn, u].
We see that (S) is a system with exactly n + 2 equations and nk + n + 1 variables
(t and ǫ are parameters). We wish to construct a zero-dimensional ideal, so we
introduce the duplicated system (Sdup) ∶= (S1, . . . ,Snk), defined in the duplicated
ring K[x1, . . . , xn2k, z0, . . . , znk−1, u1, . . . , unk, t, ǫ]. This system is built from nk(n+2)
equations and nk(n + 2) variables.

The following lemma is proven in [3, Lemma 2.10] as a consequence of Hilbert’s
Nullstellensatz and [8, Theorem 16.19]:

Lemma 2. Assume that the Jacobian matrix Jac(Sdup) of (Sdup), considered with re-
spect to the variables x1, . . . , xn, u1, . . . , xn2k−n, . . . , xn2k, unk, z0, . . . , znk−1 is invertible
at the point

P = (G1(U1), . . . ,Gn(U1), U1, . . . ,G1(Unk), . . . ,Gn(Unk), Unk,G1(0), . . . , ∂k−1
u G1(0), . . . ,

Gn(0), . . . , ∂k−1
u Gn(0)) ∈ L[[t 1

⋆ ]]nk(n+1) ×L[[t]]nk.
Then the saturated ideal ⟨Sdup⟩ ∶ det(JacS(dup))∞ is zero-dimensional and radical over
L(t). Moreover, P lies in the zero set of ⟨Sdup⟩ ∶ det(JacSdup)∞.

Therefore, in order to conclude the algebraicity of Gi(0), . . . , ∂k−1
u Gi(0) over L(t)

for all 1 ≤ i ≤ n, it is enough to justify that Jac(Sdup) is invertible at P. Then, by
Lemma 2, it will follow that it is possible to apply effective techniques from poly-
nomial elimination theory and find annihilating polynomials for the power series of
interest.

The idea for proving that det(Jac(Sdup)) ≠ 0, analogous to the proof in [4], is to
show first that Jac(Sdup) rewrites as a block triangular matrix. We will then show
that each such block is invertible by carefully analyzing its lowest valuation in t.

If A ∈ L[t][X1, . . . ,Xn, u], we shall define its “ith duplicated polynomial” as
A(i) ∶= A(Xni+1, . . . ,Xn(i+1), ui) . Then the Jacobian matrix Jac(Sdup) has the shape

Jac(Sdup) =
⎛⎜⎝
A1 0 B1

⋱ ⋮

0 Ank Bnk

⎞⎟⎠ ∈ L[[t
1

⋆ ]]nk(n+2)×nk(n+2),

where the matrices Ai ∈ L[[t 1

⋆ ]](n+2)×(n+1) and Bi ∈ L[[t 1

⋆ ]](n+2)×nk are given by:
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Ai ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

∂x1
E
(i)
1
(Ui) . . . ∂xnE

(i)
1
(Ui) ∂ui

E
(i)
1
(Ui)

⋮ ⋱ ⋮ ⋮
∂x1

E
(i)
n (Ui) . . . ∂xnE

(i)
n (Ui) ∂ui

E
(i)
n (Ui)

∂x1
Det

(i)(Ui) . . . ∂xnDet
(i)(Ui) ∂ui

Det
(i)(Ui)

∂x1
P (i)(Ui) . . . ∂xnP

(i)(Ui) ∂ui
P (i)(Ui)

⎞⎟⎟⎟⎟⎟⎟⎠
,Bi ∶=

⎛⎜⎜⎜⎜⎜⎜⎝

∂z0E
(i)
1
(Ui) . . . ∂znk−1

E
(i)
1
(Ui)

⋮ ⋱ ⋮
∂z0E

(i)
n (Ui) . . . ∂znk−1

E
(i)
n (Ui)

∂z0Det
(i)(Ui) . . . ∂znk−1

Det
(i)(Ui)

∂z0P
(i)(Ui) . . . ∂znk−1

P (i)(Ui)

⎞⎟⎟⎟⎟⎟⎟⎠
.

Using Det(Ui) = 0 and (8), we see that the first n × (n + 1) minor of each Ai has
rank at most n − 1. Hence, after performing operations on the first n rows, we can
transform the nth row of Ai into the zero vector. It follows that after the suitable
transformation and a permutation of rows, Jac(Sdup) rewrites as a block triangular
matrix. To give the precise form of the determinant of Jac(Sdup), we first define

R ∶= det
⎛
⎜⎜
⎝

∂x1
E
(i)
1
(Ui) . . . ∂xn−1E

(i)
1
(Ui) y1

⋮ ⋱ ⋮ ⋮
∂x1

E
(i)
n (Ui) . . . ∂xn−1E

(i)
n (Ui) yn

⎞
⎟⎟
⎠
∈ K[{∂xℓ

E
(i)
j (Ui)}1≤ℓ,j≤n][y1, . . . , yn].

(9)

Then it follows that det(Jac(Sdup)) = ±( nk

∏
i=1

det(Jaci(Ui))) ⋅ det(Λ), where

Jaci(u) ∶=
⎛⎜⎜⎜⎜⎜⎜⎝

∂x1
E
(i)
1
(u) . . . ∂xnE

(i)
1
(u) ∂ui

E
(i)
1
(u)

⋮ ⋱ ⋮ ⋮
∂x1

E
(i)
n−1(u) . . . ∂xnE

(i)
n−1(u) ∂ui

E
(i)
n−1(u)

∂x1
Det

(i)(u) . . . ∂xnDet
(i)(u) ∂ui

Det
(i)(u)

∂x1
P (i)(u) . . . ∂xnP

(i)(u) ∂ui
P (i)(u)

⎞⎟⎟⎟⎟⎟⎟⎠
∈ L[u][[t]](n+1)×(n+1), and

Λ ∶= (R(∂zjE
(i)
1
(Ui), . . . , ∂zjE(i)n (Ui)))

1≤i,j+1≤nk
∈ L[[t 1

⋆ ]]nk×nk. (10)

The proof that this product is non-zero is the content of Lemma 3 and Lemma 4.

Lemma 3. For each i = 1, . . . , nk, the determinant of Jaci(Ui) is non-zero.

Proof. To prove that det(Jaci(Ui)) ≠ 0 we will show that valt(det(Jaci(Ui))) < ∞,
where valt denotes the valuation in t. The main idea here is to expand det(Jaci(Ui))
with respect to the last column and show that the least valuation comes from the
product of ∂ui

Det(i)(Ui) by its associated minor which we denote byM.
Since ∂xj

Det(i)(Ui) = O(tα), it is clear that for 1 ≤ j ≤ n the determinants

of the minors associated to ∂ui
E
(i)
j−1(Ui) and ∂ui

P (i)(Ui) are in O(tα). It remains

to show that the product of ∂ui
Det(i)(Ui) by det(M) is of valuation in t strictly

lower than α. For j = 1, . . . , n − 1 and ℓ = 1, . . . , n one computes that valt(M)j,ℓ =
∂xj

E
(i)
ℓ (Ui) = β + mj

k
if j ≠ ℓ and

mj

k
if j = ℓ. Moreover, it follows from the definition

of P and expansion along the last row of the matrix which defines P that the
term with lowest t-valuation in ∂xn

P (i) is given by the product of ∂xn,ui
E
(i)
n by the

determinant of the associated minor of ∂ui
E
(i)
n . Computing this valuation while using

that α,β are chosen sufficiently large, we find that valt(∂xn
P (i)) = (∑n

i=1
mi

k
) − 1

k
=(M − 1)/k. It follows that the only monomial in the determinant of M that has
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no dependency on β comes from the product of diagonal elements of M. Using
the definition α = n2k ⋅ (⌊2M/k⌋ + 1) + nM and β = ⌊2M/k⌋, we conclude that
valt(∂ui

Det(i)(Ui) ⋅ det(M)) < α.
Lemma 4. The determinant of Λ is non-zero.

Proof. Proving det(Λ) ≠ 0 is again done by analyzing the first terms of det(Λ). We
prove can that mod tα the determinant factors as a product of Ui, the Vandermonde
determinant∏i<j(Ui−Uj), and a non-zero polynomialH(t). The actual computation
is somewhat technical, since det(Λ) is defined as the determinant of the nk × nk

matrix R(∂zjE(i)1
(Ui), . . . , ∂zjE(i)n (Ui))i,j whose entries are themselves determinants

of the n×n matrices (9). We shall give an exposition of the proof, omitting technical
details.

We denote Rj(u) ∶= R(∂zjE(i)1
(u), . . . , ∂zjE(i)n (u)) and compute Rj(ui) mod tα for

variables u1, . . . , unk. Note that the latter is a non-zero polynomial in L[u1, . . . , unk, t]
which is independent of the polynomials Q1, . . . ,Qn. Let Λ̃ = (Rj(ui))1≤i,j+1≤nk be
the matrix Λ with the Ui replaced by the variables ui. With tedious but explicit
computations it is possible to show that each element in the ith row of Λ̃ mod tα is
a polynomial in ui of degree ≤M − 1 and valuation ≥M − nk. Moreover, all entries
of Λ̃ mod tα have degree in t bounded by tn(β+1). The choice for α and β ensures
that det(Λ̃ mod tα) = det(Λ̃)mod tα.

As we have M ≥ nk, it is possible to factor out uM−nk
i from the ith row of

Λ̃ mod tα when computing its determinant. This yields polynomials of degree at
most nk−1 in ui on the ith row. Moreover, it is obvious that if ui = uj for some i ≠ j,
the determinant of Λ̃ vanishes. Hence, we can also factor out the Vandermonde
determinant ∏i<j (ui − uj). As this latter product is of degree nk − 1 in ui, we
conclude that

det(Λ̃) ≡ nk

∏
i=1

uM−nk
i ⋅∏

i<j

(ui − uj) ⋅H(t) mod tα, (11)

for some non-zero polynomial H ∈ L[t] whose degree only depends on β. Recall that
Λ̃(U1, . . . , Unk) = Λ, and all Ui are distinct with valuation in t of 1/k by Lemma 1.
Using this, equation (11) and α > (M − nk)n + n + n2k(β + 1), we conclude that
det(Λ) ≠ 0.

Having now proved that det(Jac(Sdup)) ≠ 0 at P, we can apply Lemma 2 and obtain
that the specialized series Gi(0), . . . , ∂k−1

u Gi(0) are all algebraic over K(t, ǫ). The al-
gebraicity of the complete formal power series G1, . . . ,Gn over K(t, u, ǫ) then follows
again by [3, Lemma 2.10] from the invertibility the Jacobian matrix of E1, . . . ,En

considered with respect to the variables x1, . . . , xn (with t, u, z0, . . . , znk−1 viewed as
parameters). The equalities Fi(tα, u) = Gi(t, u,0) finally imply that F1, . . . , Fn are
also algebraic over K(t, u).

As already mentioned before, a strength of the presented method is that it is
effective. Recall that Theorem 2 summarizes a bound on the algebraicity degree of
all Fi(t, u) and estimates the arithmetic complexity of the algorithm which computes
Fi(t, a).

9



Proof of Theorem 2. Using the definition of α and β in the proof of Theorem 1, the
result is proven along the same lines as the results in [3, Section 3]. The algebraicity
bound is a consequence of the Bézout theorem applied to the saturated ideal defined
in Lemma 2, while the announced complexity is a consequence of [10, Theorem 2].
This proof yields the bound (nn2k2 ⋅ (n + 1)n2k2 ⋅ (k + 1)n(3nk2+1) ⋅ δn(3nk2+1))/(nk)!nk
on the algebraicity degree and also justifies that the arithmetic complexity of the
presented algorithm is contained in O(k10nk+2n+4 ⋅n27nk+6n+9 ⋅210nk+5n ⋅δ10nk+2n+3).

4 Summary and future work

We can summarize the strategy presented in Section 3 as follows:

1. Set up the deformed system (6) and the polynomials Det, P ∈ L[X1, . . . ,Xn, t, u]:

Det ∶= det
⎛⎜⎝
∂x1

E1 . . . ∂xnE1

⋮ ⋱ ⋮
∂x1

En . . . ∂xnEn

⎞⎟⎠ and P ∶= det

⎛⎜⎜⎜⎝

∂x1
E1 . . . ∂x1

En−1 ∂x1
En

⋮ ⋱ ⋮ ⋮
∂xn−1E1 . . . ∂xn−1En−1 ∂xn−1En

∂uE1 . . . ∂uEn−1 ∂uEn

⎞⎟⎟⎟⎠
.

2. Set up the duplicated polynomial system (Sdup), consisting of the duplications
of the polynomials Ei,Det, P . It has nk(n + 2) variables and equations.

3. Compute a non-trivial element of the saturated ideal ⟨Sdup⟩ ∶ det(JacSdup)∞.
As illustrated in Example 1, the deformation step is not always needed. In fact,

it is clear that for a generic system the equation Det(u) = 0 will have nk distinct

non-zero solutions in K[[t 1

⋆ ]]. Moreover, generically, a non-trivial element of both⟨Sdup⟩ ∶ det(JacSdup)∞ and ⟨Sdup⟩ ∶ (∏i≠j (ui − uj))∞ contains the seeked annihilating
polynomial. In practice, however, the deformation is important, as the following
example shows:

Example 2 (cont.). For s randomly chosen in Q, one cannot apply Algorithm 1
because the ideal ⟨S0,S1,m ⋅ (u1 − u2) − 1⟩ is not 0-dimensional, despite the fact
Det(u) = 0 has 2 distinct solutions. However, as predicted by the theory, after
the deformation (6) the system indeed becomes zero-dimensional and can be solved
systematically, even though the actual computation becomes quite heavy.

Our strategy produces a polynomial system with nk(n + 2) variables. Since,
already for small values n, k, such systems are often out of reach, we wish to briefly
introduce an approach that has a better algorithmic complexity. The idea is to
reduce (by eliminating F2, . . . , Fn) the initial system to a single functional equation
R = 0, and then to use Bousquet-Mélou and Jehanne’s method [4]. This reduces to
solving a polynomial system with just 3nk variables and equations. In order to make
this approach work, there are two necessary conditions: the equation ∂x1

R = 0 should

contain enough (that is nk) roots in K[[t 1

⋆ ]] and the corresponding ideal should be
zero-dimensional. Note that R is not a DDE anymore in general, so these conditions
are not guaranteed. The following proposition ensures that our deformation takes
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care of the first part, and the example right after shows that the second condition
can still fail in practice.

Proposition 1. Let (E
F1
), . . . , (E

Fn
) be as in Theorem 1 and suppose that E1, . . . ,En

are the polynomials obtained after deforming (E
F1
), . . . , (E

Fn
) as in (7). Let U1, . . . , Unk ∈

K(ǫ)[[t 1

⋆ ]] be the distinct non-zero series solutions in u of the equation Det(u) = 0
and let R ∈ (⟨Sdup⟩ ∶ det(Jac(Sdup))∞) ∩ L[x1, z0, . . . , znk−1, t, u]. Then U1, . . . , Unk are
also solutions of ∂x1

R(u) = 0.
Proof. Since R ∈ ⟨E1, . . . ,En⟩, there exist V1, . . . , Vn ∈ L[x1, . . . , xn, z0, . . . , znk−1, t, u]
such that R(Uℓ) = ∑n

i=1Ei(Uℓ)Vi(Uℓ) for any ℓ = 1, . . . , nk. Differentiating with
respect to xj for j = 1, . . . , n and using that Ei(Uℓ) = 0 and that R does not depend
on xj for j ≥ 2, we find

⎛
⎜⎜⎜
⎝

∂x1
R(Uℓ)
0
⋮
0

⎞
⎟⎟⎟
⎠
=
⎛
⎜
⎝

∂x1
E1(Uℓ) . . . ∂x1

En(Uℓ)
⋮ ⋱ ⋮

∂xnE1(Uℓ) . . . ∂xnEn(Uℓ)

⎞
⎟
⎠

⎛
⎜
⎝

V1(Uℓ)
⋮

Vn(Uℓ)

⎞
⎟
⎠
. (12)

By definition of Uℓ, the matrix (∂xj
Ei(Uℓ))i,j is singular and Lemma 1 implies that

each of its (n − 1) × (n − 1) minors is invertible. It follows that we can express the
first row of the matrix as a linear combination of the other rows, then (12) implies
that ∂x1

R(Uℓ) = 0.
Example 2 (cont.). For s randomly chosen in Q, reducing to a single equation R

(by taking the resultant with respect to x2), we indeed find that ∂x1
R(u) = 0 has

two distinct roots in K[[t 1

⋆ ]]. However, the computation of a Gröbner basis reveals
that the corresponding ideal has positive dimension.

Future work. The present work provides a fruitful toolbox for proving algebraic-
ity constructively and elementarily. Practical experiments (which are also based
on further algorithmic tools that are under development) make us believe that our
method has good potential for practical unresolved combinatorial examples as well.
Moreover, there are three most natural directions for further work. They will deal
with complexity improvements for practical computations and theoretical general-
izations:

1. Exploit the strategy hybrid guess-and-prove, which was used in [3, Section 2.2.2]
to tackle first order scalar DDEs efficiently, and which turns out to be useful
when dealing with huge polynomial systems.

2. Proposition 1 ensures that the deformation (6) guarantees nk distinct roots of
∂x1

R(u) = 0, however, as demonstrated above, the corresponding ideal might
still have positive dimension. Investigate whether it is possible to overcome
this issue.

3. Extend the results to a higher number of “nested” catalytic variables, where
the algebraicity is still guaranteed by Popescu’s theorem, but with no effective
version.
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[1] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. “msolve: A
Library for Solving Polynomial Systems”. In: 2021 International Symposium
on Symbolic and Algebraic Computation. ISSAC ’21. Saint Petersburg, Russia:
ACM, July 2021, pp. 51–58.

[2] Nicolas Bonichon et al. “On the number of planar Eulerian orientations”. In:
European J. Combin. 65 (2017), pp. 59–91. issn: 0195-6698.

[3] Alin Bostan et al. “Algorithms for Discrete Differential Equations of Order
1”. In: Proceedings of the 2022 International Symposium on Symbolic and
Algebraic Computation. ISSAC ’22. Villeneuve-d’Ascq, France: ACM, 2022,
101–110. isbn: 9781450386883.

[4] Mireille Bousquet-Mélou and Arnaud Jehanne. “Polynomial equations with
one catalytic variable, algebraic series and map enumeration”. In: J. Combin.
Theory Ser. B 96.5 (2006), pp. 623–672. issn: 0095-8956.

[5] W. G. Brown andW. T. Tutte. “On the Enumeration of Rooted Non-Separable
Planar Maps”. In: Canadian Journal of Mathematics 16 (1964), 572–577.

[6] William G. Brown. “Enumeration of quadrangular dissections of the disk”. In:
Canadian J. Math. 17 (1965), pp. 302–317. issn: 0008-414X.

[7] Manfred Buchacher and Manuel Kauers. “Inhomogeneous restricted lattice
walks”. In: Sém. Lothar. Combin. 82B (2020), Art. 75, 12.

[8] David Eisenbud. Commutative algebra. Vol. 150. Graduate Texts in Mathe-
matics. With a view toward algebraic geometry. Springer-Verlag, New York,
1995, pp. xvi+785. isbn: 0-387-94268-8; 0-387-94269-6.

[9] Dorin Popescu. “General Néron desingularization and approximation”. In:
Nagoya Math. J. 104 (1986), pp. 85–115. issn: 0027-7630.
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